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ABSTRACT

Molecular pathway data are essential in current
computational and systems biology research. While
there are many primary and integrated pathway
databases, several challenges remain, including low
proteome coverage (57%), low overlap across dif-
ferent databases, unavailability of direct information
about underlying physical connectivity of pathway
members, and high fraction of protein-coding genes
without any pathway annotations, i.e. ‘pathway or-
phans’. In order to address all these challenges,
we developed pathDIP, which integrates data from
20 source pathway databases, ‘core pathways’, with
physical protein—protein interactions to predict bio-
logically relevant protein—pathway associations, re-
ferred to as ‘extended pathways’. Cross-validation
determined 71% recovery rate of our predictions.
Data integration and predictions increase coverage
of pathway annotations for protein-coding genes to
86%, and provide novel annotations for 5732 pathway
orphans. PathDIP (http://ophid.utoronto.ca/pathdip)
annotates 17 070 protein-coding genes with 4678
pathways, and provides multiple query, analysis and
output options.

INTRODUCTION

Together with other biological networks physical protein—
protein interaction (PPI) networks and pathways are es-
sential resources in computational and systems biology re-
search (1-3). Known and predicted PPIs connect 17 976
human proteins by 850 636 interactions (4), yet this num-
ber will increase in the future due to more splice variants-
(5) and context-specific PPIs (6). ‘Contextualizing’ the net-
works, by identifying conditions such as localization, cell

type, tissues and processes where these interactions are
functional is a multi-step process. Some of this information
is available in existing source pathway databases, which pro-
vide detailed information about functional interactions of
biomolecules, including proteins, that work cooperatively to
accomplish a specific task (7).

Primary pathway databases provide manually curated re-
source for pathway models, focusing either on specific pro-
cesses (e.g. NetPath (8), SMPDB (9)), or global characteri-
zation (e.g. KEGG (10), Reactome (11)). Besides providing
detailed information about molecular dynamics and cellu-
lar processes, these resources are essential for pathway an-
notation and enrichment analysis (reviewed in (7,12)).

Despite these efforts, analysing data through primary
pathway databases remains challenging due to: (i) low
protein-coding gene coverage of individual databases that
significantly biases analysis (e.g. KEGG and Reactome
cover 6724 and 7667 unique protein-coding genes, respec-
tively), (ii) low overlap among different databases that leads
to different enrichment analysis results (KEGG and Reac-
tome overlap in 4992 genes while their union covers 9396
genes), (iii) lack of information about physical vs functional
interactions, resulting in missing key information and (iv)
high fraction of protein-coding genes being absent from any
database, referred to as ‘pathway orphans’.

Integrated pathway databases such as DAVID (13), iPavs
(14), Panther (15), PathCards (16), PathwayCommons (17)
and WikiPathways (18), address low overlap of primary
databases. ConsensusPathDB (19) and EnrichNet (20) at-
tempt to reduce study biases by analysing network modules
specific to each query gene list, and HCPIN (21) extracts
pathway networks by focusing on structural analysis of can-
cer pathways, limiting its annotation domain. While these
efforts increase coverage and improve enrichment analysis,
they still suffer from pathway orphans.

To address these shortcomings, we integrated data of
twenty core pathway databases with physical protein in-
teractions to predict missing protein—pathway associa-
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tions. We have developed pathway Data Integration Portal,
pathDIP (http://ophid.utoronto.ca/pathdip), for compre-
hensive gene enrichment analysis, which annotates 17 070
human protein-coding genes with 4,678 pathways.

MATERIALS AND METHODS
Data collection and processing

All data sources used in pathDIP are publically available,
as described below. Details about data sources versions and
our processing methods are available in Supplementary Ta-
ble S1A.

Pathways. PathDIP provides access to 4678 pathways
from twenty source pathway databases (Supplementary Ta-
ble S1B).

Protein interactions. Experimentally detected physical
PPIs and high-confidence computationally predicted PPIs
based on orthology and FpClass algorithm (22) were ob-
tained from IID version 2015-09 (4).

Diseases.
databases:

We integrated data from three disease gene

1. GAD (23) includes 15 160 disease titles in 19 categories
of diseases (final release: September 2014);

2. COSMIC (24) archives detected mutations in genes
across 43 different tissues by curating low-throughput
data from papers as well as processing high-throughput
data from genome-wide studies, such as TCGA and
ICGC. We defined and used COSMIC-05 as list of COS-
MIC genes with mutation rate of at least 5% in at least
one tissue;

3. GeneSigDB (25) is a database of manually curated dis-
ease gene signatures extracted from published papers
across different groups of diseases. GeneSigDB v.4 in-
cludes 2906 human cancer gene signatures from 1366 pa-
pers, covering 17 859 unique protein-coding genes.

Overlap of these three databases with pathDIP data is
presented in Supplementary Table S2A.

Drugs. We obtained druggable genome list and drugs in
clinical trial database from (26,27).

GeneOntology (GO). We downloaded human gene anno-
tations file from GO website (http:/geneontology.org) as of
12 October 2015.

ID conversion protocol

While pathDIP handles multiple IDs, e.g. Entrez gene,
UniProt, Ensemble, gene symbols, etc., we use Entrez Gene
ID as primary identifier in this paper.

Protein—pathway association scores

First, we defined each pathway, P, as a feature and tagged
each protein in the PPI network with its corresponding fea-
tures, i.e. pathways that it belongs to. Next, for each protein

p we defined ny as the number of its interaction neighbours
that were tagged with feature f. Finally, we used Fisher’s ex-
act test to calculate the probability by which we expect p to
have equal or more than nyneighbours with tag f(details are
provided in Supplementary text). We corrected these cal-
culated probabilities for multiple hypothesis testing (FDR;
BH function in R) to obtain fdr, p). We defined association
score of a pair (p, P) as:

assoc(y, p=1 — fdre,, p).

Protein—pathway pairs with score of at least 0.95 (i.e.
pairs with FDR < 0.05) are predicted to be associated.

Evaluation of predictions

Data. We used extended pathways that predict novel path-
way associations using integrated experimentally detected
and computationally predicted PPIs described above. For
analysis and statistics reported in this paper we used cut-oft
threshold of 0.95 for association score.

Randomization test. Since we cannot evaluate sensitivity
directly (due to lack of true negatives), we evaluate the scale
and significance of the recovery rate (details are provided in
Supplementary text) of our predictions by comparing it to
an empirical distribution of recovery rates for predictions
that were obtained by using randomized networks. We ran-
domly shuffled labels of proteins in union of interactome
and pathways (details are provided in Supplementary text)
10 000 times, while maintaining the topology of PPI net-
work and pathway annotations of each protein (i.e. genes
with same labels in all randomized networks have same
pathway annotations too). We executed our scoring algo-
rithm using these randomly labelled PPI networks to gen-
erate 10 000 random-based extended pathways. Next, we
compared the recovery rate as well as distribution of asso-
ciation scores obtained from these random-based extended
pathways, with those that were obtained from original PPI
network (whose protein labels are correct).

Overlap coefficient. We calculated overlap coefficient for
each pathway pair (Supplementary Figures SIA and B) by
dividing size of their overlap over size of the smaller path-
way between the two pathways under comparison.

Jaccard index. 'We calculated Jaccard Index for each path-
way pair (Supplementary Figures S1C and D) by dividing
size of their overlap over size of union of the two pathways
under comparison.

pathDIP portal

PathDIP provides users with several filters and search set-
tings to customize the retrieval and analysis.

Customized search. PathDIP accepts lists of different
types of identifiers. Users can search by selecting any com-
bination of twenty source databases, core or extended path-
ways, and confidence level of the predictions.
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Summary statistics. Coverage of each pathway set, i.e.
core and four different extended pathway sets, for the input
list is provided to users to facilitate more educated choice of
settings when they customize their search.

Pathway association annotations. PathDIP annotates pro-
teins in the input list with the predicted associated path-
ways. For each novel prediction, association score, and PPIs
that connect protein and pathway are included in this ta-
ble, along with links to relevant Entrez Gene, UniProt, and
HGNC entries. Summary of the associations are also avail-
able in a matrix view. Both views are downloadable in tab-
delimited format. Users can select one of the five pathway
definition sets: core pathways, extended pathways based on
experimentally detected PPIs at cut-off association score of
0.99 or 0.95, and extended pathways based on experimen-
tally and high-confidence computationally predicted PPIs
at cut-off association score of 0.99 or 0.95 as source of an-
notation and background for enrichment analysis.

Enrichment analysis. PathDIP portal provides pathway
and pathway title word frequency enrichment analysis. In
both cases, we use Fisher’s exact test and correct raw P-
values for multiple hypothesis testing based on two meth-
ods: Bonferroni and false discovery rate (BH method).

Pathway enrichment analysis. A detailed table compris-
ing pathway enrichment analysis results is available in both
HTML and downloadable tab-delimited formats. All of the
genes that belong to the user-selected pathway definition
sets (e.g. core or extended pathways) and source databases
(e.g. all twenty databases or a subset of them) are considered
as background to calculate row over-representation proba-
bilities at a query time.

Word enrichment analysis. Depending on the input list and
user settings, interpreting and visualizing pathway enrich-
ment results can be challenging due to large result tables.
PathDIP offers pathway title word enrichment analysis,
where words in all pathway titles serve as background to cal-
culate enrichment score for each informative word present
in the titles of enriched pathways. Next, for each word W
with enrichment score P(j), we defined a word enrichment
score, S(w), as: -log;y (P(w)). While pathDIP provides
simple word cloud based on word enrichment scores, words
and their enrichment scores are also available for download
as a text file, which could be visualized using customisable
word cloud visualizer such as http://www.wordle.net, https:
/Iwww.jasondavies.com/wordcloud/, and wordcloud pack-
age in R. Resulting word clouds do not represent simple
word frequencies, rather, they reflect the significance of ap-
pearance of each word in titles of enriched pathways.

Programming tools

Predictions and analysis.  Association scores were com-
puted in R (version 3.0.2), and its base packages and func-
tions. Graphs in this paper were generated using RColor-
Brewer (version: 1.1_2), gplots (version: 2.16.0), VennDia-
gram (version: 1.6.9), ComplexHeatmap (version: 1.11.1),
and circlize (version: 0.3.7) packages.
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Table 1. Recovery rate of predictions

Experimental and
high-confidence predicted

Recovery Only experimental PPIs PPIs
assoc(g, P) > 0.99 0.51 0.65
assoc(g, P) > 0.95 0.60 0.71

Portal implementation. Interface to the pathDIP database
is implemented at JavaServer Faces framework running on
IBM WebSphere application server (v8.5), with IBM DB2
database (v10.1) engine as a back end storage. In order to
improve the performance, the WebSphere and DB2 are run-
ning on different virtual instances of IBM P770 and P750,
running AIX (v7.1).

RESULTS AND ANALYSIS
PathDIP content

Pairwise overlap of existing primary pathway databases re-
mains limited—only 4992 protein-coding genes overlap be-
tween the largest databases (KEGG and Reactome; Fig-
ure 1A and B), and only four genes overlap between Bio-
Carta and SIGNOR. While this causes inconsistent results
of pathway enrichment analysis across different databases,
it shows that large fraction of data is complementary (Fig-
ure 1B and C), and would benefit from integration.

Core pathways. Core pathways integrate 4678 pathways
from twenty pathway sources (almost three times larger
than Reactome), and annotate 11 338 human unique
protein-coding genes (providing 57% protein-coding gene
coverage). Gene coverage saturates at 10 605 after integrat-
ing the six largest source pathway databases (Supplemen-
tary Figure S2) and 43% of human protein-coding genes
remain pathway orphans, i.e. proteins lacking pathway an-
notation in any of the twenty databases (Figure 1D), which
leads to substantial biases in pathway enrichment analysis.

Pathway associations and their computational evaluation.
We used physical PPIs to predict biologically relevant
protein—pathway associations. Computational evaluation
of our predictions for core protein—pathway pairs shows
that: (i) distribution of association scores for core protein—
pathways is significantly higher than that of the full set of
association scores (Supplementary Figures S3A and B); (ii)
recovery rate of our predictions for core protein—pathway
pairs is 71% (Table 1), 24 times larger than recovery rate
of predictions based on random networks (P-value < 1074;
Supplementary Figures S3C-H).

Extended pathways. Extended pathways integrate core
pathways and predicted protein—pathway associations, and
annotate 17 070 protein-coding genes (Figure 2A and B),
which is over 2.5 and 2.2 times larger than coverage of
KEGG and Reactome, individually. Extended pathDIP
also increases pairwise overlap of pathway databases (Fig-
ures 2C-E and Supplementary Figures S1A and B). Impor-
tantly, this improvement is not a result of associating all
genes to all pathways (Supplementary Figures S1B and D).

Increased coverage significantly contributes to more sys-
tematic analysis and reduces bias caused by lack of path-


http://www.wordle.net
https://www.jasondavies.com/wordcloud/

D422 Nucleic Acids Research, 2017, Vol. 45, Database issue

A

Pairwise overlap

0 10,000 15,000

Interactome and Pathways

All pathways

BioCarta

EHMN
systems-biology.org

HumanCyc
OntoCanro
PharmGKB
PID
RB-Pathways
Reactome
Signalink
SIGNOR
SMPDB
Spike

stke
UniProt.Pathways
Wikipathways

Wikipathways
UniProt.Pathways
systems-biology.org
stke

Spike
SMPDB
SIGNOR
Signalink
Reactome
RB-Pathways
PID
PharmGKB
OntoCanro
NetPath
KEGG

IPAVS

INOH
HumanCyc
EHMN
BioCarta
Allpathways

Reactome
S

c BioCarta

Wikipathways
Reactome

KEGG

2601
(13%)

InteractomeandPathways

F

Figure 1. Coverage of major pathway databases and physical PPIs for protein-coding genes. (A) Number of proteins covered by individual pathway
databases (diagonal), and their pairwise overlaps for protein-coding genes. (B) Each of the two largest core pathway databases covers less than 40% of
protein-coding genes. Moreover, <25% of the genes (n = 4992) are covered by both KEGG and Reactome. (C) Overlap of the four largest available

general-domain pathway databases shows that they share only 864 genes (8.4%

of the union of four pathway databases). (D) 43% of protein-coding genes

do not have any pathway annotation, from which 5994 are available in interactome.

way annotation. For example, while each of KEGG, Re-
actome, and core pathDIP cover between 0% and 100% of
each of the 2906 human cancer gene signatures in Gene-
SigDB (25) median coverage of KEGG and Reactome are
55% and 57%, while median coverage of core pathDIP is
81%. Minimum coverage of gene signatures by extended
pathDIP is increased to 59% and its median reaches 99%
(boxplots in Figure 3A). Furthermore, minimum coverage
of extended KEGG and extended Reactome is increased to
40% and 47% with median coverage of 95% and 97% (de-
tails in Supplementary Table S2B).

Core and Extended pathways are available for down-
load and enrichment analysis can be performed online at
pathDIP portal: http://ophid.utoronto.ca/pathdip.

DISCUSSION

PathDIP is a pathway annotation database and enrich-
ment analysis portal that associates 17 070 unique human
protein-coding genes to 4678 pathways. Notably, pathDIP
provides pathway annotations for 5732 pathway orphans.
Absence of these genes from core pathways is not due to
their lack of importance as many of them are known disease
genes and drug targets. For example, ‘druggable genome’
list (26) includes 3860 unique genes out of which 937 are
pathway orphans, and 560 of them are annotated in ex-
tended pathDIP (Supplementary Tables S2C-E). Our anal-
ysis also shows that many of pathway orphan genes have
been listed as disease genes in different disease databases.
We found 503 pathway orphans that belong to three major

disease gene databases, GeneSigDB, GAD and COSMIC-
05, and extended pathDIP annotates 487 of those orphans
(Figure 3B, Table 2, and Supplementary Tables S2F-G).

While all 487 disease genes are important, PTPRD has
been associated to the highest number of diseases in GAD
(54 discases and 13 disease classes). It has been mutated
in >13% of melanoma samples, 9% of lung adenocarcino-
mas (7% of all sub-types of lung cancer), and 8% of stom-
ach cancers based on COSMIC data (Supplementary Tables
S3A-D). PTPRD is also among genes in druggable genome.
A large list of publications that support the importance
of PTPRD in diseases is reviewed in (28). Our predictions
have associated this gene to 213 different pathways (Supple-
mentary Table S3E). ‘Signaling’, ‘adherens’, ‘neurotrans-
mitter’, ‘cancer’, ‘EGFR’, ‘ERBB2’, ‘MAPK’, ‘E-cadherin,
‘SHC1’, ‘adhesion’, are among top enriched words in ti-
tles of these pathways (Supplementary Table S3F). This is
highly consistent with GAD classes of diseases that P7-
PRD has been associated with (Supplementary Table S3B),
as well as with Gene Ontology terms that PTPRD is anno-
tated with (Supplementary Table S3G).

Low coverage of existing primary and integrated path-
way databases compared with Gene Ontology (GO) has re-
sulted in frequent application of GO instead of pathways
for gene/protein enrichment analysis, at the price of los-
ing information about physical and functional dependen-
cies among genes. Integrating pathway resources with PPIs
addresses this challenge, since median coverage of extended
pathDIP and GO-human for genes in 2906 human can-
cer gene signatures available in GeneSigDB (sizes range be-
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Figure 2. Improvement of core vs extended pathway databases in covering genes/proteins. (A) Comparison of coverage of core versus extended version
of each pathway database for interactome. (B) Overall coverage of core and extended pathways for protein-coding genes. (C) Pairwise overlap of core
pathway databases. (D) Pairwise overlap of extended pathway databases. (E) Extended pathways show significant improvement in the protein coverage of
single databases (diagonal) and pairwise overlaps of pathway pairs (under the diagonal), compared with core databases.

Table 2. Pathway orphan genes associated to diseases in different disease databases and their overlaps

GeneSigDB, GeneSigDB, GeneSigDB, GAD,
Disease databases GeneSigDB GAD COSMIC-05 GAD COSMIC-05 GAD, COSMIC-05 COSMIC-05
Number of pathway 2349 12 10 2537 165 26 478
orphans with available
predictions

tween 1 to 3927 genes with median of 37 and mean of
112) reaches 99%. Importantly, although distributions of
pathDIP and GO coverage for cancer signatures are compa-
rable (P-value < 0.45, Student’s ¢-test) minimum coverage
of GO is 41% but pathDIP covers at least 59% of each gene
signature (Figure 3A). Notably, comparison of any other

two out of these five functional annotation sets is statisti-
cally significant (Figure 3A). Other advantages of pathDIP
over GO for enrichment analysis include providing list of
physical interactions of protein—pathways that is missing in
GO, as well as a smaller set of terms (about 1/10 of GO)
that are also more informative and specific.
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while pairwise comparison of coverage of KEGG, Reactome, Core pathDIP with each other and with both extended pathDIP and GO for signatures
shows statistically significant (two-tailed Student’s 7-test) distributions (KEGG and Reactome: P < 0.005, KEGG/Reactome and Core pathDIP: P < 2.2
x 1071°, Core pathDIP and Extended pathDIP/GO: P < 2.2 x 10~!%), GO and Extended pathDIP do not show any significant difference in distributions
of their coverages for gene signatures (P-value < 0.45). Boxplots show that although coverages of pathDIP and GO for cancer signatures is similar, the
minimum coverage by GO is 41%, while pathDIP covers at least 59% of each cancer gene signature. (B) Overlap of GeneSigDB, GAD and COSMIC
covers 1716 genes out of which 503 are pathway orphans and we have annotated 487 of them with predicted pathway associations. Furthermore, there are
several thousands of pathway orphan genes that have been associated with diseases in at least two out of three databases for which pathway associations

are available.

PathDIP not only increases coverage of pathway anno-
tations for proteins, it also improves pairwise and overall
overlaps of pathways of the same-class. Same-class path-
ways are pathways from different source databases that de-
fine the same process or function. Supplementary Figures
S4 and S5 compare distribution of overlap of pathway pairs
across and within pathway databases, and demonstrate that
low overlap of pathway databases is relatively evenly dis-
tributed across pathway pairs regardless of whether they are
the same-class or not (see Supplementary text and Supple-
mentary Table S4 for more details). To illustrate this im-
proved feature in pathDIP, we chose five of the most stud-
ied pathway classes among hallmarks of cancer (29): ‘cell

cycle’, ‘apoptosis’, ‘NOTCHI1 signalling’, ‘P53 signalling’
(four pathways frequently disrupted across different can-
cer types (29,30)), and ‘glucose metabolism’ (at top of hi-
erarchy of cancer metabolic pathways (29,31)). Overlaps of
extended definitions of pathways in each of these classes
exhibit clear improvement compared with the overlaps of
their core members (Supplementary Figures S6 and S7). In-
creased overlap of same-class pathways also implies that,
although pathways in the same class share small number of
core members, their member genes share significantly high
number of direct interactors in PPI network that results in
associating same proteins to same-class pathways. Glucose



metabolism pathway-class is the only exception among the
above five pathway-classes.

Our analysis shows that metabolic pathways in general,
are one group of pathways with almost no expansion. In
fact, extended pathways’ growth rate compared with their
core versions is not uniformly distributed. While the me-
dian of growth rate of pathway sizes is 9.88 (Supplemen-
tary Table S5A), some pathways show growth rate above
500 times and some show close to zero growth rate. The top
5% extended pathways include signalling, cancer, and DNA
damage and repair pathways (Supplementary Table S5B).
High growth rate of these pathways is due to presence of
highly studied genes such as MAPK, PIK3, TP53, GRB2,
HRAS, AKT, EGFR, etc. in these pathways. The bottom
5% extended pathways include olfactory, metabolism and
biosynthesis, transporters, and receptors pathways [Supple-
mentary Table S5C]. Low growth rate of metabolic path-
ways is also reflected in Figure 2E in which EHMN and Hu-
manCyc, the two metabolic pathway databases, show low
improvement in their protein coverage. We attribute the low
growth rate of these pathways to low degree proteins or in-
teractome orphans (22). This is consistent with the results
of (22) that also suggests reasons for such proteins to lack
PPIs in currently available interactome.

This direct effect of PPI networks on coverage of pathDIP
exemplifies the fact that, despite its unique features, ex-
tended pathDIP is still bound to available biases in its
data sources, i.e. pathways and PPI data. In particular,
extended pathDIP cannot annotate a few thousands of
protein-coding genes that are currently absent from PPI net-
work, many of which are important in medicine. For exam-
ple, among 937 pathway orphan genes in druggable genome
list, 377 genes are not present in extended pathDIP. More-
over, out of 1049 unique proteins that are annotated as drug
targets in Drugs in Clinical Trials Database (27), 70 are
pathway orphans. Twenty three of these proteins are tar-
gets of drugs some of which have been approved by FDA
since 1956. PathDIP provides predicted pathway associa-
tions for only 15 of these 70 genes. The remaining 55 genes
as well as 361 of the aforementioned 377 druggable genes
are PPI orphans, i.e. they are absent from PPI network (22).
Gene Ontology enrichment analysis of these proteins sug-
gests their involvement in ‘metal ion transmembrane trans-
porter activity’, ‘transmembrane receptor activity’, ‘pep-
tide binding’, and ‘cation channel activity’, as well as ‘pro-
tein metabolic process’, ‘cell-cell signalling” and ‘response to
stimulus’. Furthermore, there are 262 unique pathway or-
phan genes with protein products in the PPI network for
which we could not make any predictions. These genes are
of low degree in the PPI network, i.e. only 83 of them have
degree >1 and the maximum degree is 14 (Supplementary
Table S6). Low degree proteins in PPI network have intrin-
sic properties similar to properties of PPI orphan genes (22).
Since these 262 pathway orphan genes are also low degree
proteins in PPI network, their lack of pathway annotations
could be due to such properties that make them more chal-
lenging to study.

Sources, analysis and results in this paper are based
on pathDIP version 2.5, which has been built based on
Fall/Winter 2015 releases of source pathways and PPI
sources. Some of the pathway and interaction resources
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have been updated since then. For example, the most recent
release of Reactome (v58, released on September 28, 2016)
covers about 10,000 protein-coding genes, and KEGG has
added or revised seventeen new human pathways to its
database (Release 80.0, October 1, 2016). These and other
improvements will be integrated into the next pathDIP re-
lease, as we plan two major releases annually.

Integrating curated pathways with PPI data and compu-
tational pathway-association predictions provides the most
sensible approach to decreasing biases and improving path-
way annotation coverage for protein-coding genes. PathDIP
(http://ophid.utoronto.ca/pathdip) offers such rich resource
for pathway annotation and pathway enrichment analysis.

FUTURE WORK

This manuscript and current pathDIP provide only the first
step in addressing pathway integration and prediction chal-
lenges. One of the major remaining challenges is a com-
prehensive same-class core pathway consolidation across
multiple sources. This is not a trivial task due to several
problems including (but not limited to) different criteria
that individual databases cover such as domain-specificity
and confidence levels of pathway members and PPIs, as
well as use of diverse vocabulary and terminologies in ti-
tles of similar pathways. For example, spliceosome pathway
in KEGG is referred to as mRNA processing and in Reac-
tome as mRNA splicing pathway. A related problem is re-
dundancy in integrated pathway databases due to similar in-
formation provided by different pathway databases. A third
problem is different pathways with close titles; for example,
snRNP and vRNP (dis)assembly. These problems will influ-
ence pathway association prediction and enrichment analy-
sis, and thus any solution would need to be thoroughly val-
idated by biological experiments and curation. Addressing
such challenges is part of our plans for further improvement
of pathDIP.

Current version of pathDIP has been already applied
(32,33), highlighting the value of predicted pathway as-
sociations in pathway enrichment analysis. Furthermore,
improved overlap of extended pathways compared with
overlap of their core versions (Supplementary Figures S6
and S7) suggests that extended source-specific, same-class
pathways converge to similar definitions, highlighting that
pathDIP will contribute to consolidation of existing path-
ways. Interestingly, same-class pathways are extended based
on their low-overlapping core definitions (gene content). As
such, it provides the consolidated infrastructure for address-
ing the next challenges such as consolidating pathways and
validating predictions experimentally.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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